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~ Abstract—A space- and time-adaptive two-dimensional mul- plete set of field basis functions resulted in the multiresolution
tiresolution time-domain (MRTD) algorithm based on arbitrary  time-domain (MRTD) [3] schemes that are generalizations to
resolutions of Battle-Lemarie wavelets is proposed. Analytic yee's FDTD and can extend the capabilities of the conventional

expressions for the finite-summation coefficients are derived and EDTD bv i . tati | effici d substantiall
details concerning the modeling of hard boundaries, excitation, y improving computational efiiciency and substantially

and field reconstruction are extensively discussed. Through the reducing computer resources by providing space and time adap-
use of a combination of absolute and relative thresholding, a dy- tive gridding. Though various basis have been used [4]-[9], the
namically changing grid is developed with minimal computational  Battle—Lemarie family has demonstrated the better economy in
requirements in comparison to the finite-difference time-domain  \yemgry and execution time requirements, when only scaling
t_echnlque. After the_valldatlc_)n_pro_cess, MRTD is used for the first functions have been used (cell size close to the Nyquist limit)
time for the numerical optimization of complex RF structures - - :
such as evanescent-mode filters. The purpose of this paper is to extend the performance anal-
ysis to MRTD schemes based on Battle—Lemarie scaling and
wavelets, exploit the adaptive character of such a scheme, and

lay the foundation for the use of other expansion basis.

Index Terms—Adaptive gridding, FDTD, MRTD, time-domain
techniques, wavelets.

. INTRODUCTION TO TIME-DOMAIN TECHNIQUES Il. FUNDAMENTALS OF MULTIRESOLUTION ANALYSIS

IGNIFICANT attention is being devoted today to the anal- one of the most important characteristics of expansion to

Jysis and design of various types of printed components Qg ajing and wavelet functions is the time-frequency localiza-
microwave apphpauons. Despite t.he wealth of gyallablle c'odq'%n_ The standard approach in ideal low-pass (“scaling”) and
many problems in electromagnetlcsZ a_nd s_pecmcally_ in C'rc%randpass (“wavelet”) filtering for separating an analog signal
and antenna problems [e.g., monolithic microwave integratgg, giferent frequency bands emphasizes the importance of
circuit (MMIC) packaging, multichip modules (MCMs)], havejjime |ocalization. The multiresolution analysis (MRA), intro-
been left untreated due to the complexity of the geometries afjgheq by Mallat [10] and Meyer [11], provides a very pow-
the inability of the existing techniques to deal with the requirgsyf | too for the construction of wavelets and implementation of
ments for large size and high resolution due to the fine, byfe \yavelet decomposition/reconstruction algorithms. The sam-
elec_tncally important geqm_etrlce_ll det:_:uls._ For these cases, tﬂfhg theorem can be used to formulate analog signal represen-
straightforward use of existing discretization methods (such ggions in terms of superpositions of certain uniform shifts of a
finite difference time domain (FDTD) [1], [2]) suffers from Se-gjnqe function called a scaling function. Stability of this signal
rious limitations due to the required substantial computer rgspresentation is achieved by imposing the Riesz condition on
sources and unrealistically long computation times. As a Iy g scaling function. Another important condition of an MRA is
sult, during the past 30 years, the available techniques are gk nested sequence of subspaces as a result of using scales by
most incapable of dealing with the needs of technology Iead'ﬂ&eger powers of two.
to a quest for fundamen'FaIIy different modeling approaches. o MRA [12] consists of a sequence of successive approxi-
Recently, the use of scaling and wavelet functions as a Cofjation space¥;. More precisely, the closed subspatésat-

isfy
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exists an orthonormal wavelet bagis; ., n € Z} of L*(R),
;. n(w) = 279/2p(277 2 — n), such that for allf in L*(R)

Piaf=Pif+ > <fibjn>in 4)

kcZ

8L Cubic Spline Scaling - Spatial Domain

wherep; is the orthogonal projection onig;. For everyj € Z,
defineW; to be the orthogonal complementdf in V;_,;. We
have

phi(x)

Via=V,eW; (5)
and

Wi LWy, j#5 ®)

It follows that forj < J

J—j—1

Vj =Vie < @ WJ_k> (7) Fig. 1. Battle-Lemarie cubic spline scaling—spatial domain.

k=0
where all these subspaces are orthogonal. Equation (7) is the
foundation of multiresolution. Supposing that scaling functions . 8t CublcSpline Wavelet - Spatial Domain
of Jth-order approximation are used, the enhancement ¢
wavelets of orders/ to j + 1 create an approximation with
much better accuracyjth-order approximation). In other 1t
words, the scaling functions describe accurately the smoo
features of a function and the wavelets the finer details fo
which a more accurate approximation has to be used. Inth 051 ]
way, MRA operates as a “mathematical microscope.” Whereve £
needed, a finite linear combination of wavelets can offer al &
arbitrarily small precision of the approximation.
It has to be noted that tH&'; spaces inherit the scaling prop-

erty from theV;

f(x) e Wy & f(27z) € Wo. (8)

The Battle—Lemarie wavelets [13], [14] based on:ilth order Mo % s 4 =

cardinal B-splines belong t6* with & < m — 1, have very
good (exponential) decay though the support equals the whg;& 5
R, and haven vanishing momentsf dz ' ¢(z) = 0 forl =

x O
n
s
-
(-3
S

Battle—Lemarie cubic spline zero-resolution wavelet—spatial domain.

0,1, ..., m— 1 for ® bounded fo < m. The choices of
the scaling function for the remainder of this paper are the cub’ BL Cubic Spline Scaling — Spectral Domain
cardinal splinef: = 3). After orthonormalization, the spectral ! ' ‘ ' ' ‘
expressions of the cubic cardinal spline scaling and the wavel os} 1
functions (Figs. 1-4) are osl
<§) * 07 .
Ssin 5
PO = em)T | - -
£ )
5 EO.S
1 0.4t ]
4 2 4 3+ _
1— = sin? § + Zgint § — sin® § o3
3 25 2/ 315 2 0zl ]
© o1 ]
and —QIO -8 -6 -4 -é 0 2 4 6 8 10

X ‘ 2L . . X ksi
by = e P EEI by ). o)

(;)J-(Q‘/Q + 7r) Fig. 3. Battle—Lemarie cubic spline scaling—spectral domain (“low-pass”).
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BL Cubic Spline Wavelet - Spectral Domain

Ez(‘/rv Z, t)
+oo

= 2

k,l,m=—o0

kEl m— I/Qhk(t)d)l(x)d)nl—l/Q(z)

+oo 272 —1

+ Z ST wEDY s ()

k,l,m=—oor.,=0 p.=0

. ¢l(x)¢;; 1/2,p. (z)

+oo 27® —

+ Z > Z KB s O h(8)

k,l,m=—oor,=0 p,=0

: 1/){3,1 (w)</>m_1/z( z)

oTa, T

+ Z Z Z KB s hy ()

k,l,m=—occrs,r:=0 py,p-=

) 1/11 Pl( )z/}rn—l/Q,p; ( *)

Fig. 4. Battle-Lemarie cubic spline zero-resolution wavelet—spectral domaity J(x, 2, 1)

(“bandpass”).

I1l. Two-DIMENSIONAL MRTD SCHEME

A. Multiresolution Expansion

For simplicity, the two-dimensional (2-D) MRTD scheme is
analyzed for a homogeneous lossless medium with the permit-
tivity € and the permeability. Assuming no variation along the
y-direction, the Maxwell's equations for the 2-DM* mode

[16] can be written as

OE, 1 OH,
7 - Ty 11
ot e Oz (1)
oH, OE. OE,

ot <% CE ) (12)
OE. 10H,

at e or (13)

To derive the 2-D MRTD scheme, the electric- and magnetitthere ¢.(x) = ¢((z/Az) — n) and ¢y, ,

+ oo

- 5

k,l, m=—oc

'd)l 1/2( )d)rn 1/2( )

+oo 275 —1

Z DD FEVEY: Sy e G THRYA ()

k,l,m=—ocor.,=0 p.=0

) ¢l—1/2($)1/}:;; 1/2,p. (z)

oo 27F —

T Z Z Z k+1/2HJﬂf/TQ’m 1/2hk+1/2(t)

k,l,m=—oor,=0 p,=0

. Z/);)I1/2 Do (x)(/)mfl/Q(z)

+ Z Z Z k+1/2Hl

k,l,m=—ocory,r.=0 po,p-=0

y hk+1/2(t)1/15f1/27pw (.’L’)i/):;_l/zp: (Z)

kr12HY Uy o pohiesao(2)

Yroy, paWr.. ps

1/2,m— 1/2

(14)

() = 277,

field components incorporated in these equations are expané&d(z/Az) — n] — p) represent the Battle-Lemarie scaling

in a series of scaling and wavelet functions in betland »-di-
rections and in pulse functions in time [4], [17]

Eﬂ?(xv 2, t)
+ oo
- Z Elx (1;572 m ‘(t)d)l—l/?(‘r)d)nl(z)
k,l,rnzfoo
oo 277 —1 J
D VIS 3B DRt e
k,l, m=—occr.=0 p.=0
'¢l—1/2($)¢£§,p (2)
+oo 277 —1
+ Z Z Z kEl7T/T2 m hk()

kI, m=—o0r,=0 p,=0

: Z/);Il/Q P (x)d)nl(z)

oTas Tz

D> Y

k,l,m=—core,r:=0 p,,p.=0

) hk(t)r(/};ll/zpl( )r(/)rn , P2 ( )

Ty Pry, peWr. ps
kEl 1/2,m

and r-resolution wavelet function, respectively. The expres-
sions of the scaling and the zero-resolution wavelet in the
spectral domain are given in (9) and (10). Since higher res-
olutions of wavelets are shifted and dilated versions of the
zero resolution, their domain will be a fraction of that of the
zero-resolution wavelet; thus, there is going to be more than
one higher resolution wavelet coefficient for each MRTD cell.
Specifically, for the arbitrary resolution and for the: cell to

the z-direction, there exis” wavelet coefficients located at
z/Ax =n+ (p/2"T),p=0, ..., 2" — 1. This is the reason

for the summation of the terms for each resolution in the
expansion of (14 ;1" andy 1o H; 0" with k = @, y, 2
andyu, v = ¢, ¢ are the coefficients for the field expansions
in terms of scaling and wavelet functions. Schemes based on
a displacement off and E by (1/2)("»"2)+2 instead of 1/2
could provide slightly improved numerical dispersion and
stability characteristics. Nevertheless, for simplicity reasons,
the Yee’s convention is used for the derivation of the MRTD
equations. The indexds m and % are the discrete space and
time indexes related to the space and time coordinates via
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x = [Az, z = mAz andt = kAt, whereAzx, A~ are the and
space discretization intervals in the andz-directions andAt¢ oo ayr ()
is the time discretization interval. For an accuracy of 0.1%, th Pm () Z AL/, p
above summations are truncated to a finite number of terms de-o dx
termined by the dispersion and stability requirements (typically

their maximum value is between 22-26). The time-domaimith

expansion functior(t) is defined as 1 e A )
i p) = [ 2 i/
0

-sin [g(z' +0.5+p/2" +1 /2"+1)] de (24)

nd,r,2

Z dr(iv p)‘sm-l—i, m’
t=—TNg, 1
(23)

dr ~

ha(t) = h <ﬁ - k) (15)

with the rectangular pulse function

and
1, for |z| < 1/2 N N
e a m’ <’ .
h(t) =< 172,  for|z| =1/2 / Pr, o (z) d)gil/“’(x) dra > el P)omtim
oo ’ T

="M, r, 1

f 1/2.
0, or|z| > 1/ 25)

The magnetic-field components are shifted by half a discretizgith

tion interval in the space and time domains with respect to the 1 [

electric-field components (leap-frog). (i, p) = —/ 272G (O)|ho(€/27) ¢
Upon inserting the field expansions, Maxwell's equations are T Jo

sampled using pulse functions as time-domain test functions and

scaling/wavelet functions as space-domain test functions. For

the sampling in the time domain, the following integrals are utgnd

-sin [S(i +0.5—p/2" — 1/2”+1)} de (26)

lized: o0 oY’e, x

oo / ﬁm@»JEgﬂélw

/ hk(t)hk/(t) dt = 6k, w Ax (16) - &z
and + ~ Z le, T2 (Za D1, p?)érn—l—i, m’ (27)
et Ohy t T=—Np vy, g, 1
/ ha(t) kgiim dt =6k 1 — Ok, 41 (17) e
oo with
whereéy, v is the Kroenecker symbol )
bT] , T2 (Za D1, p2)
s _{1, fork =% oo o )
e T, = | Winlerzlinterz e
sin €6+ 1/2 4 po /272 — pp /27 41 /272
B. Battle—Lemarie Expansion Basis [5( /24 2/ P/ /
Sampling in the space domain is obtained by use of the - 1/27’1“)} dg. (28)

orthogonality relationships for the Battle—Lemarie scaling a

wavelet functions [12]

+oo
d)nl(x)d)nl’ (.’L’) de = 6771, m’ Az

+oo

(b"l(x)z/}:n’,p’ (.’L’) dr =0 \V/T, D

and

+oo
/ z/}:;l, p(x)z/}:n’, p’ (‘T) dr = 67’7 7’,677% m/ 61’: P,A‘T'

— o0

|'Il(.'ior the remainder of this section, an expansion only in a series
of scaling and zero-resolution wavelet functions will be consid-
ered. Hints for the enhancement of additional wavelet resolu-
tions will be presented where needed in the following sections.
Since for the zero resolution & 0), there is only one wavelet
(19) coefficient per cell = 0), thep symbols will be omitted from

the definition of the, ¢, d coefficients, which will be given by

(18)

The integrals containing derivatives can be approximated by tivéth

following expressions:

o d)m (-’17) a(bm,(;;/Q (x)

Ng—1

ade o) i=—n,,,

with

o) =7 [ 16©Pesn [¢Gi+1/2)] de

dr =~ Z a(i)5m+7‘,,m’

Feo a¢nl’+l/2(x) alie .
0 ~ P .
(20) /_OO r‘/)m(x) 9z dx = i:zn;ml CO(L)(Sm-I—z,m’
(29)
@) =3 [ b in©lcsinleil e, (@0)
(21)
and
o, e
/ ¢nl($) }57;/2(.%) dx ~ Z dO(Il’)érn—l—i, m’
(22) B i=—ngq, 0,1

(31)
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TABLE |

COEFFICIENTS (%), bo (), co(i)

505

i a(i) bo(?) co(%)

0 1.29161604157839 2.47253977327429 0.

1 -0.155978843323672 0.9562282774123074 | -4.659725793402785E-02

2 | 5.9606303324687290E-02 |  0.1660591600788887 5.453939813583327E-02

3 | -2.929157759806890E-02 | 9.392437777679437E-02 | -3.699957746974982E-02

4 | 1.5362399457426780E-02 | 3.141444475216036E-03 | 2.057449098775452E-02 |

5 | -8.184462325283712E-03 | 1.349356908709108E-02 | -1.115303180864957E-02

6 | 4.3757585552354830E-03 | -2.858941810094752E-03 | 5.976877725279031E-03

7 | -2.342365356649461E-03 | 2.778680514115529E-03 | -3.202621363952005E-03

8 | 1.252877717042020E-03 | -1.129446167303586E-03 | 1.714086849566890E-03

9 | -6.716635068590737E-04 | 7.071507309377701E-04 | -9.176508438494196E-04

10 | 3.583506907489797E-04 | -3.491267305845643E-04 | 4.911754748072018E-04

11 | -1.931321684715780E-04 | 1.952711419194906E-04 | -2.629253013538502E-04

12 | 1.019327767057869E-04 | -1.021304423384722E-04 | 1.407386855875626E-04

13 | -5.613943183518454E-05 | 5.531259273864269E-05 | -7.533840689573666E-05

14 | 2.834596805928539E-05 | -2.947330468694831E-05 | 4.033146235099674E-05

15 | -1.700348604873522E-05 | 1.572110653438641E-05 | -2.159462850665844E-05
with conditions are not general and do not hold for any other arbitrary

oo ) resolution. The stencil size is determined by the dispersion re-
L)I/ P (E)[Po(€)[€sin(€i+1) dE = co(i+1). (32) quirements. It has to be noted that the Battle—Lemarie scaling
0 function has exponential decay; thus, the coefficier{ts for
Observing the similar form of (24)—(26), (31) can be written as> 12 are not zero, but their value is negligible 10~%).
+o0 8wgl,+l/2(x) After applying the Galerkin technique to (11)—(13), the fol-
/ Pm () — or dx lowing MRTD equations are derived:

— o0

Me,0,2-1 k+1El 1/2 m kEl 7(1;572 m
~ Z o (Z + 1)6n1+i,nl’- (33) At
t=—nc, 0,1—1 1 na—1
AISO, = —GAZ < Z a(m/)k-l—l/QHly_’f;bQ,rn—l—rn’—l—l—l/?
b o o m'==ne
JECC R = IR SR NCT
X .
with w k+1Ef;f?§fm—kEf;f?§fm
bo(i) = bo.ofi) = [ in(©)€sin 666+ 1/2)] s (39) Y
0

Ng—1
with a(4), bo(i), co(i) given in Table I [4]. Due to symmetries _ __1 Al Ve o V00
in the integrals for the zero resolution, the coefficients satisfy €Az mon )it/ 2 i1 12172
the conditions:(—1 — ) = —a(i), bo(—1 — i) = —by(¢), and

co(—1) = —co(4) fori < 0. Hence, the stencil lengths have to be + Z k+1/2HJ771#;J;JOm+m, Lo
7,0,0,1 = N6,0,0,2— 1 =npandn, o,1 = ¢ 0,2 = ne. TheSE m=—
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, Y ) U ng—l1
w1y 1720 m kEfflféJ,nz 1 Z a(mWE™ ¥
At Az il 1—1/2, m+m’
1 2 , , n,
— ) Hy7¢5¢5 ) .
— <m/;m co(m it1/2H"T)n i p1-1)2 + Z co(m/ WE} f;“; et 1
ne—1 m/=—n,
: Y, i ¢ ¥, : ¢
- Z bo(m)41/2H ({720 m+m’+11/2> bt/ 2 1 1 go — km1y2
At
U ) | (2 ey
= I+, m—1/2
At Ax v m—1/
1 e , bod ny—1
J— colm’),. HU:WO , o
Az nl,ZnC 0( )k+1/2 -1/2, m+m’+1-1/2 + Z bO(l/)kEf_;_q;?ﬁl_l/2>
ne—1 UV'=—mny
ng—1
+ Z bo k+1/2Hl 1/2 m+m’+1 1/2) i 1 Z ( ) E LYo
m=—n Az 1—1/2, m+m’
Z, ¢¢ mi=—ng
k+1Ean—l/2 kEl m— 1/2 e o
At + Z Co (m/)kEf;T;;jOrn+nl’ —1
ng—1
_ 1 N / v, 66 o o
= Ar <l,_z:n a(l )k+1/2Hl+l’+171/2,rnfl/2 k+1/2Hl‘lJ_’f7;7 m—1/2 ~ k_l/QHly_’f72 m—1/2
: At
+ Z co(l k+1/2Hl+l' 1/2,m—1/2 1)1 Lol AW
UV=—n, = ; A_.’L' Z a(l )kEl-I—l’,rn—l/Q
: U'=—n
z, p110 @
k+1El m— 1/2 - kElirnﬁl/Q L
At + Z CO l/ kElk—Ilqlio—uio,nl—l/Q
ng—1
1 N ' y, P e
= <l_z: a(l )k+1/2Hl+lf+0171/2,mfl/2 1 i co(m B o, b
—Ng Ax kEy 1/2, m+m’
Z " m/=—n,
+ co(l k+1/2Hl+l’ 1/2 m—1/2 no L )
. UV=—n. , + Z bO 1 7(1;5720, m,—l—rn’)]
zZ, 1Y Z [S—
k+1E1,rZO—1/2 - kEl JTJ 1/2 . "
At k+1/2Hl—1/2, m—1/2 " k— 1/2Hl 1/2 m—1/2
1 e , At
_ ) o
=z < Z CO(Z’)k+1/2sz+zr+1_1/2,m—1/2 111 i (l)
U'=—n,. =~ | Az kEl l’ m—1/2
np—1 | Ax v + /
+ Z bO(l/)k+1/2Hly-|7—;7(—J|—qi—1/2,m—1/2> ne—1 e
l,:fnf’ ) + Z bo l—|7—l’ m—1/2
kHE{’rZO 10/2 kElerO—uiO/Q r==m
At 1 N o
1 T - Az < Z o (m/)kElm—Tf;Q, m+m/
- < Z CO(l/)k+l/2H;J-|7—ﬁqjlj—01—1/2,m—1/2 " =—nr::1
= + > bolm WET s l+m,>]. (36)
Z bo(l' k+1/2Hi/4’.;7$§0 1/2,m— 1/2) e
U=—n; The values of the stencil lengthg, 7, n. depends on the ac-
k+1/2H§’,’f72 me1/2 k_l/sz’Lfo m_1/2 curacy and dispersion requirements. The discretization cell is
- At - similar to the conventional FDTD cell (Fig. 5).
101 — In [18], the stability limit for the 2-D MRTD scheme based
~ Z a(l’ )kEz+zf /2 only on the scaling functions’ expansion (S-MRTD) was found
T\, to be given by

S

/=0

n. ; 1
+ Z co(l’) EIJJ,O[;; m— 1/2) At < <na—1 ) @37
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Fig. 5. MRTD discretization cell in 3-D.

Stability Factor
e
]
T
s

whereAz, Ay are the cell dimensions and= 1/,/ue¢ is the

oafF o
velocity of the light in the modeled medium. N R
For Az = Ay = A, the above stability criterion gives e
A A 0.3 '\_\ e
Ats-]\IRTD S _1 — SSS . (38) _____________________________________ - [RUR
Ta C\/Q
gl i 1 1 2 : ' s
C\/i Z la(i’)] 025 2 4 8 10 12 14 16
=0 Stencil n_ =, =n_
It is known [2] that _ .
1 Fig. 6. Stability parametey for MRTD.
Atpprp < i i (39)
ey —— 4+ —— with the first equation shown at the bottom of this page, and
(A " (Ayp? N
which gives forAz = Ay = A Atyw, W, —MRTD, max ~ SWoW, — =
C\/Q
Atpprp < o3 (40)  with the second equation shown at the bottom of this page,

. : o here the notation
Equations (38)—(40) show that, for same discretization size, tWe

upper bounds of the time steps of FDTD and S-MRTD are com- n-l

parable and related through the factoThe stability analysis Z |z = Z |l=(K")|

can be generalized easily to three-dimensional (3-D). The new K k=0

stability criteria can be derived by (38) and (40) by substitutingas been used.

the termv/2 with /3. It can be observed that the upper bound of the time step de-
More complicated expressions can be derived for the ma¥ends on the stencil size,, n,, n.. This dependence is ex-

imum allowable time step for schemes containing scaling apgessed through the coefficientss, sw,s, sw,w,. which de-

wavelet functions. For simplicity and without loss of generalit)(;rease as the stencil size increases. F|g 6 showsgbqn'acti_

itis assumed that the stencil size is equal for all three summggly converges to the value 0.6371 aftgr > 10 andsyy, s ~

tions (na = ny = n. = n). The upper bound of the time ¢ 3433 and sy, ~ 0.2625 for n, = n, = n, > 10. The

step for the 2-D MRTD scheme with zero-resolution waveletspression ofss can be easily derived by the expressions of

to the one ¢-direction) or two directionsa(- andy-directions) sy, ¢ andsw,w, by zeroing out the effect df,, co. The above

for Az = Ay = Ais given by expressions can be generalizedifgr, resolutions of wavelets
A N A by dividing the time-step expression By=x due to the dilation
Wo S-MRTD, max ~ §W; 5 /2 of the r,,,.. wavelet resolution.
2
SVV(jS =

2

2’ 2’ @’ 2’ @’ @’

<Z|a|>2+<2|bo|>2+2<Z|co|>2+<2|a+bo|> <Z|a—bo|>2+4<2|co|>2+2 ;|a|

1

() () 2 (Sre0) = (Swi) | (Se-) +4(Sw)

SWoW, =
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nonphysical electrical coupling. Thuswo wavelet compo-

TANGENTIAL nents, one located infinitesimally on the left-hand side of the
TOTHE P.E.C. PEC and the other infinitesimally located on the right-hand
E-FIELD

side of the PEC, have to be defined in order to satisfy the
electrical isolation condition. ThéZ-field component that is
parallel to the PEC has to be treated in a similar way. The rest
components of thé&- and H-field have to be zeroed-out on

" Rield at the both sides of the PEC, so one value is sufficient. In FDTD, the
Image PEC. =0 interleaved positioning of the field components on the Yee's
cell (which are the same with the scaling functions components

PEC. on the MRTD's cell) requires that the normal-to-PECfield

component is located a half cell size away from the conductor.
In this way, the definition of only one field component per cell
is sufficient.

2) Modeling of Dielectric InterfacesDue to the entire do-

Fig. 7. Image theory application for tangential-to-PEdield.

PEC. PEC main basis functionsD of one cell is related td& values all
.................................... over the neighboring cells [19]. To circumvent this problem, the
1 mcell m+D-cell] | mecen (m+1)-cell] . .

i g, i i Curl D equations have to replace tharl £ equations and then
i - - I -~ the £-coefficients have to be calculated from thecoefficients
) Ew. | Sy 1 Eg E, ' . . . . .
LR WIS S SR S, S in a mathematically correct way. After inserting the field expan-
sions in Maxwell's equations, we sample them using pulse func-
M.RT.D.-Wavelet M.RT.D.- Scaling tions in time and scaling/wavelet functions in space domain.
or . .
FD.T.D. As an example, samplingD,, /0t = —dH, /0= in space and

time, the following equations are obtained:
Fig. 8. Treatment of wavelet components of normal-to-HE@eld.

k+1Dl 1/2 m kD%M

—1/2,m
In addition, the dispersion curves have demonstrated that cell At
sizes close to the N_yquist limit provide acceptable accuracy 1 "il a(m) v 4
even for zero resolution of wavelets. These schemes have been™ A, kt1/280-1/2, mam/41-1/2
rn’——na

proven to be equivalent to 22nd-order FDTD schemes [18]. On
the contrary, conventional FDTD (second-order) simulations re- " Z HY
quire much smaller cell sizes (close or belayi0). Dhr2HY 1/2 mtm/—1/2

1) Modeling of Hard BoundariesUnlike the FDTD where

the consistency with the image theory is implicit in the appl|cak+1Dz 1/2 m sz 71#;;5 m
tion of the boundary conditions, for MRTD schemes based on At
entire-domain functions, this theory must be applied explicitly 1 no—1 ) . bad
in the locations of perfect electric conductors (PECs) or per- = ~ 1 Z a(m )k+1/2Hz_’1/2, mAm/+1—1/2
fect magnetic conductors (PMCs). The total value of a field m’——"a
component at a specific cell is affected by a theoretically in-
finite—practically finite—number of neighboring cells due to + Z mkr1/2H ] 1/2 A 1/2>
the fact that the basis functions extend fremc to co. Some ==
of these neighbors may be located on the other side of the cop+1 D}’ "f;”; m kDf_(f%J’ m
ductor. This effect is taken into consideration by applying the Af
image theory (Fig. 7). In this way, the physical boundary condi- 1 e ’
tion of zeroing-out thé’-field tangential to the PEC is automat- = “As < Z Co(m')k+1/2Hly;f727 mtm/+1—1/2
ically satisfied. For example, even symmetry is applied for the T \m/=—n,
normal-to-PEC electric-field components and odd symmetry for ne—1
the parallel-to-PEC. Image theory can be implemented automat- + Z bo(m ) pt1/2HY” %0 mAm/+1— 1/2)
ically for an arbitrary number of hard boundaries. mi=—
The time-domain numerical techniques are modeling th@+1Dl”f;;“m - le_”f;;me
real space by creating a discrete numerical grid. Sometimes At
this mesh does not coincide with the electrical one, and MRTD 1 ne
is one example. The enhancement of wavelets on MRTD = —x < Z co(m Yit1/2H; l/jm+m,+1 12
requires a special treatment of the wavelet components of # N\ =n.
the normal-to-PEC electric field. Assuming a vertical PEC np—1 o
in Fig. 8, the electrical domains (I) and (Il) are isolated from + Z bo(m)py1/2H;” f;;finm,ﬂ_l/?)
each other. That means that one wavelet component value of m'=—n,

the normal electric fiel&ExAcTLY ON the PEC would create a (42)
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where , D58 and HY S with ¢, ¢ = ¢ (scaling), ¢, Leo Lo o »
(wavelets of zero resolution) are the coefficients for the elec-  + Z Z e U m B
tric- and magnetic-field expansions. UV=—ly, \m'=—ly
Starting from the constitutive relationship = £ for the Ly,
total electric field at one mesh point and sampling the scaling + Z szzf(i(l/’ m’)kEfjrf,'jg;rm,
and wavelet components, we reach the following equations for mi=—ly,
D, (42)
T, pP
IL,m
L L where
= Z Z ci? (l )kEl+l’ m+m/
UV=—1l, \m'=-1,
l Gsay, / / (@, )1 (@), 0 (2)
+ Z Cii’ (l /)kEf-Ij—ﬁ?)rL;l-l—nl’ 51, rn( V)SQ, m4+m’ (v) dz dx (43)
m/=—1,
Ly 1y .
b ‘ p6,d g o0 and (1, (2, &1, & = ¢ (scaling),, (wavelets of zero reso-
- Z Z Chop s m LU, mAtm/ lution). Applying these equations for all neighboring cells that

have nonnegligible values for at least afé!* *(I’, m’) coef-
ficient, the following compact form is derived:

z, Yoo
+ Z w»w» ) El—l—l’ m+m/

et D] = [F] [E]. (a4)

ol

iy
= Z Z c%¢7 m' )i E; ﬁfﬁn o For geometries with dielectrics varying from aét.(= 1) to Si
V=—1, (e, = 2.56), it was observed that the above summations can
be truncated fot, = [l,;,, = 6. Also, the integrals can be ap-
+ Z o d(l m ) B A proximated by finite summations of six ceII_s on eac_:h sid_e of the
#¥o U, mAm central cell ¢ cell). Due to the orthogonality relationship be-
tween the scaling and wavelet functions, for uniform dielectrics
, (constant; throughout the integration domain), these integrals
+ > > o W mWEL Y are simplified t0c<151’ (I, m') = e, 060 andcgg;’d =0
for ; # (oré; ;é 52, transforming[ €] to a diagonal matrix.
o, J For structures containing dielectric discontinuities, some or all
+ Z Copotg (', m )kEl;ﬁﬁf;Lm, of these integrals have a nonzero value. In this case, the whole
Yo geometry has to be preprocessed before the initialization of the
DT #e time loop, and the coefficientst!t! (', m’) have to be as-
L L signed to any celll, m) and included in the matrij¢ |. For each
_ Z Z C@#’Jo,d(l/’ m') Elxjjqb o ce_II, the amplitude of tggse coefficients is c_o_mpared to the am-
s plitude of the self-terng’’, ,(0, 0). If all coefficients are below
a threshold (usuallgo.l%), they are set to zero and this cell is
N z“”: cﬁ“’d(l W WES, o ?xempted from th_e following invergion, otherwis.e itis included
Yo +U, mAm! in a new submatrix. For most practical cases, this submatrix has
Vo significantly smaller dimensions thda] (usually <10%) and
Yo Ly J contains only cells close to dielectric discontinuities. The in-
+ Z Z C$f;’d(l )kEf+}7°m+m, verse of this matrix is used for the calculation of thefrom
vo \="ly the D values for each time step. The inversion takes place only
once (in the preprocessing stage before the initiation of the sim-
+ Z c“?%’od(l )kEzir;fO:llmf ulations),_ thus it adds only negligible_compgtationf_;ll over_head to
the algorithm. Even for structures with arbitrary dielectric con-
D Yot figurations, the number of cells with dense submatrices (density
TLm larger than 50%) is going to be much smaller than the total grid
L . size and the matrix multiplication step for tlecalculation will
= Z Z Cq;;%’d(llv m/)kEf;#mijf not significantly affect the execution time.
U==ly \m'==ly 3) Modeling of Excitation: Without loss of generality, the
oo modeling of the excitation for the 2-D algorithm is presented.
+ Y e, mIwWER R The two-and-one—half-dimensional (2.5-D) and 3-D algorithm

Yo I+, m+4+m/ . i . .
mi=—ly,, is a direct extension of the 2-D algorithm.
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TABLE I
EXCITATION SCALING DECOMPOSITIONCOEFFICIENTS
ls 0 1 2 3 4 5 6
c;,(l¢) 0.91507 | 0.03820 | 0.00963 | —0.00863 | 0.00502 | -0.00268 | 0.00141

In order to apply a point (pulse) excitatiét{z., z.)forz. =

Az, ze = m.Az, the pulse has to be decomposed in terms of

scaling and wavelet functions

Z C[;b[;b z, z;57 z, ¢)¢(le +la;,q5)

lo,g=— -

oo

) (/)(me + lz,qb) + Z Z c;wo (lm, ¢ lz,u')o)
[ 00 1y, 4oy =—00

. h=—
L

“ple + L, )P (me +12,)
+ Z Copo (Lo Lo, ) (le 4 U op,)
l =—ool, 4=—00

x, %o

o>
€
E Coporpo (lw, o Lz, w’o)

NE

. (/)(me + ZZ7¢) +

lo, o ="001; =00
“p(le + Lo, w, )th(me + 12 4,) (45)
with
czbqb(ll‘, ) ZZ7 ¢)
1.4+0.5 me—+0.5
-/ Bl + L, s)p(m. + L., ) dz da
le—O.S rne—O.S
CZE% (I Loy L 4,w
1.40.5 m.+0.5
Plle + 1z, 8)0o(me + 1. 4,) dzda
1.—0.5 me.—0.5
cu’;,, (l T, %00 14745
1.40.5 me—+0.5

Yolle + 1o o )0(Mme + 1. ¢) dzdz

o, Uz, 00 Lz, 5,)
1.+0.5 me+0.5
= / e + 1z ) da:/ PYo(me + 1z ,) dz
{

e—0.5 me—0.5
= cgls, ), (L2, 5, )
ol o 12,0)

{.40.5 me—+0.5
_ / boll + 1o ,) da / $(me +1..4) d
l

e—0.5 me—0.5
= ¢y, Uz, v, )5 (=, 0)

CZ’,OU’,O (lac, Yo ZZ, WO)

1.40.5 me+0.5
= / z/)0(16 + lw,u")o) dx/ 1/)0(me + ZZ, wo) dz
{

.—0.5 me—0.5
= CZ’;O (la:,w'o)CfLo (lz, w'o)’
with ¢, 7, given in Tables Il and IIl.
Due to the symmetries of the Battle—Lemarie scaling and
wavelet functions, the decomposition coefficients have to sat-
isfy the following conditions:

cg(ly) =c5(=ly), 1y

Czn(lwo)zczo(l—lwo), lwo IO, —].7 —2, [
If a hard boundary, such as a PEC, is located in the integration
domain of the evaluation of thé coefficients, the image theory
should be applied appropriately instead of the above symmetry
equations.

For each time step, the excitation scaling and wavelet com-
ponents have to be superimposed to the respective field values
obtained by the MRTD algorithm in order to provide a trans-
parent source similar to FDTD as follows:

=-1,-2, ...

5 — @, total
- (le —0.5 me 0.5 kEle+la:,q’»7nle+l;7q’»
otbo wu‘iov 4% b .
l.+0.5 me—+0.5 — kEl€+ln‘ oy metls o + C¢¢(lq;7¢, ZZ7¢)
bo(le + L, bo(me + 1, dz dx. ¢wo,t0ta1
/ 0.5 /rne—Oo z/ a wO)z/ ( + wO) kEl Flo, o, met+lz g
(46) = kEl +l et py T Cow, e, o0 L2 0,)
Practically, the summations of (45) can be truncated to a finite . E;M;, total l
number of terms. Usually 6-8 terms on each side of the exci- + *o’m teo .
tation point per direction can offer an accuracy of representa- kEz S ool s L 0)

o1, total

tion close to 0.1%. In case the neighboring scaling or wavelet o "
z, %01 MeTlz, o

functions are located outside the computational domain (e.g., o .
le + 1z 6/p, > nx ONle + 1y 4/, < 0for adomain(0, nz] to =BT merte g, T G (e wes L)
the z-direction), image theory has to be applied for their tran&or the 2.5-D MRTD algorlthm which requires impulse exci-
lation inside the computational grid. tation in time-domain, the above superposition takes place only
If there is no discontinuity (hard boundary or dielectric interfor the first time stefgt = 0). Nevertheless, for the 2-D MRTD,
face) in the summation interval of (45), the double integrals #fhas to be repeated throughout the number of time steps that
(46) can be split in two single integrals the excitation is on. The appropriate number of the time steps
will depend on the time dependence of the excitation (usually

cSalle s, Lo ) . . -
olls, “51 +0’f) 0.5 Gaussian, Gabor, or sinusoidal time dependence).
_ / ' B(le +1a, ) da:/ o P(me + 1., ) dz Arbitrary excitation spatial distributiong(z, =) for an area
le—0.5 ' ’ me—0.5 ' ” [.Tl = 157 1AJ}, To = le, QAJ}] X [Zl = Me, 1AZ, Zy = mengz]

= c5(le, o)Lz, ) can be modeled in a similar way. The spatial distribution has to
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TABLE 1lI

EXCITATION WAVELET DECOMPOSITIONCOEFFICIENTS

i a(i) bo(i) coli)

0 1.29161604157839 2.47253977327429 0.

1 -0.155978843323672 0.9562282774123074 -4.659725793402785E-02
2 | 5.9606303324687290E-02 0.1660591600788887 5.453939813583327E-02
3 | -2.929157759806890E-02 | 9.392437777679437E-02 | -3.699957746974982E-02
4 | 1.5362399457426780E-02 | 3.141444475216036E-03 | 2.057449098775452E-02
5 | -8.184462325283712E-03 | 1.349356908709108E-02 | -1.115303180864957E-02
6 | 4.3757585552354830E-03 | -2.858941810094752E-03 | 5.976877725279031E-03
7 1| -2.342365356649461E-03 | 2.778680514115529E-03 | -3.202621363952005E-03
8 1.252877717042020E-03 | -1.129446167303586E-03 | 1.714086849566890E-03
9 | -6.716635068590737E-04 | 7.071507309377701E-04 | -9.176508438494196E-04
10 { 3.583506907489797E-04 | -3.491267305845643E-04 | 4.911754748072018E-04
11 | -1.931321684715780E-04 | 1.952711419194906E-04 | -2.629253013538502E-04
12 | 1.019327767057869E-04 | -1.021304423384722E-04 | 1.407386855875626E-04
13 | -5.613943183518454E-05 | 5.531259273864269E-05 | -7.533840689573666E-05
14 | 2.834596805928539E-05 | -2.947330468694831E-05 | 4.033146235099674E-05
15 | -1.700348604873522E-05 | 1.572110653438641E-05 | -2.159462850665844E-05

511

be sampled with scaling and wavelet functions, giving the nder . 1 < l. < l. 2 andm. 1 < m. < m.,o.

decomposition coefficients

Cop(Me, leilz, 0, 1z, 0)
le,2+0.5  pme 2+Oo
/1 0.5 /rnel 0.5
p(me +1. o) dzdx

c¢w mea le7lac &> ~,wo)
le,24+0.5 pme, 2+Oo
,1—0.5 /me 1—0.5
mp—i—lé v, ) dzdx

e

Cy, mealevlw Wor 4(;5)
le,2+0.5 mMe 2-1-00

/ ,1—0.5 /rnel 0.5
Pplme +1. o) dzdx

€
C‘ oo mea levl T, Y00 77#0)

/ez+00/me 2+Oo
1—0.5 me, 1—0.5

“Po(me + 15, ) dzdx,

z, 2)P(le + Lo, )

Z)(/)(le + laz, 45)

.’L’ Z)z/)o(le + ZT,Wo)

.T Z)z/)o(le + lﬂ?,wn)

For most simulations, the choice B8 < I, 4, 1, ., L. 4,

., < 8 offers an accuracy close to 0.1%.

Lossy materials can be modeled with MRTD following a pro-
cedure similar to the simulation of dielectric interfaces. The ad-
ditional loss current ternd is given by the matrix relationship

L.

[7]=[7][E] 47

where[7 | is the matrix consisting of the sampled conductivity
profile for each FDTD cell.

The PML numerical absorber can be easily extended for arbi-
trary wavelet resolutions in a straightforward way [20]. Due to
the entire-domain nature of the Battle—Lemarie expansion basis,
a matrix equation has to be solved for the perfectly matched
layer (PML) area. For structures with inherent dielectric inho-
mogeneities, the use of the effective dielectric consignpro-
vides satisfactory numerical reflection performance.

4) Total Field ReconstructionDue to the nature
of the Battle-Lemarie expansion functions, the total
field is a summation of the contributions from the
nonlocalized scaling and wavelet functions. For ex-
ample, the total electric field E,(xs, zf, ty) with
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(k—1/2)At < t; < (k+1/2)A¢, (I — 1)Az < 2y < lAz improved numerical dispersion and stability characteristics.
and(m — 1/2)Az < z; < (m + 1/2)Az is calculated in the Their derivation is similar to the one presented in this section.

same way with [4] and [21] by After sampling Maxwell's equations with scaling and wavelet
E®(xy, 2, t7) functions, expressions similar to (36) are derived. As an
fen example, samplingE,. /ot = —(1/¢)dH,/dz in space and
time, the following equations are obtained:
Z bryv—1/2(xf) z, b
U=—1l, k+1El+1/2 m El+1/2 m
I At
N na
kElm V_ /¢nl+m’(zf) _ 1 / Y, PP
m;zﬁ o T Ay Z afm )k+1/2Hly+1/2,m+m'+1/2
o max 2" —1  Mdp
+ Z kEl+l’ “172. nl+nl’¢0:"l+"l,(zf) + Z Z Z dy(m’, Plr+1/2
— r=0 p=0 m'=-ngq,
l Fo
Y, Yr, p
- Z Yo, upr-1/2(% ) Hl+1/2 mm/ +(2p+1)/2r+1> (49)
l’=_lwo
Iy and
T, Yo d T, P, T, DY,
Z:, REL0 2, s O (25) k+1El+1/2,m+(2p’+1)/2“+1 - kEl+1/2, m+(2p/ +1)/27 1
e At
1 i
T, Yotfo Y
+ ,z:l El+l’ 1/2. m+m’z/}07 m+m’(zf) (48) = — Ay Z Cw(ml, p/)k+1/2Hi}_|if/q527m+m’+1/2
m/=—l;, T m/=—n, o
where ¢y (x) = ¢((z/Ax) — 1) and ] (x) = 2% Panax 27 —1
(2"[(z/Az) — 1] — p) represent the Battle—Lemarie scaling +>.> Z by o(m, P, p)
and r-resolution wavelet function, respectively, ang,.. r=0 p=0 m/=—n; , _
is the maximum wavelet resolution used in this area of the ’
computational domain. It has been observed that the values ) HY e (50)
L = 12 0= 13 0= l4 o=10 andlg 1= 13 1= l4 1 = 6 offer RL/250041 /2, mopm +(2p+1) /271
accuracy close to 0.5% for most simulations incorporating the
first two wavelet resolutions. For the cases of narrow stripghere . E;%° and HY,%° with ¢ = ¢ (scaling), ..,
with very sharp field discontinuities, the summation limits mugtvavelets ofr resolutlon at thep-position of the cell) are the
increase up to 15-20 terms per direction. coefficients for the electric- and magnetic-field expansions.

The fact that the MRTD is based on entire-domain basis funthe indexesl, m, and k are the discrete space and time
tions with varying values along each cell offers the unique oprdexes, which are related to the space and time coordinates
portunity of a multipoint field representation per cell. The neighda = = [Az, z = mAz andt = kAt, whereAz, Az are
boring scaling and wavelet coefficients can be combined in #me space discretization intervals in the and z-directions
appropriate way to calculate the total field value for more thaand At is the time discretization interval. The coefficients
one interior cell points. In this way, MRTD creates a mesh witla(m'), c,.(m/, p'), b, .(m/, ', p), d.(m/, p) are given
much larger density than that offered by the nominal numbky (22)—-(28). For an accuracy of 0.1%, the parameters
of the cells without increasing the memory requirements. This,, n._,, ns_, _, na, Need to take values in the range of 6-12.
additional density is very useful in the calculation of the chaithe summation limitsn, , ~ get decreasing values as the
acteristic impedance of planar lines, where even a small figlifference|r’ — | gets Iarger due to the different scales of the
variation can cause a perturbation of the impedance value Wgvelet domains reaching the minimum value of one even for
5-10%2. Onthe contrary, FDTD is based on pulse basis functiofis — /| = 2.
that have a constant value for each cell, offering a single-pointTo model a dielectric discontinuity, the starting point is the
field representation. constitutive relationshifD = ¢£ that derives the following

5) Generalization for Arbitrary Number of Wavelet Resequations forD,.:
olutions: For simplicity, wavelets up tor,., resolution DaC s b
are used only to the-direction. The extension to two and "l" y
three dlmen3|0|js is stra|ght_forward. Since the support of an ~ 4o d Y I
(r, + 1)-resolution wavelet is one-half of the support of an™ Z Z o (s m’ )i l+l' m+m
ro-resolution wavelet, it is obvious that for each cell, there ‘="t \"™'="k
will exist one zero-resolution wavelet, two one-resolution »27 1 ey
wavelets, ..., and 2"===~1y . -resolution wavelets. As it + Z Z Z W ‘@, )kEljjwfnim
was noted earlier, schemes based on a displacemef of r=0 p=0 m'=-l;_,
and F by (1/2)™~*2 instead of 1/2 could provide slightly (51)
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and
T, b
kL m
iy &y
_ E;b'l;"/',"/’ »’o d
= E: E: Cop
V=—1ly, \m'=—¢,
Prmax 271 S¥rp

IPIDINDY

r=0 p=0 m’=—¢£,;,. ,

where theg'¢> ¢ coefficients are defined by (46). For each time
step, D is calculated byH through the discretized Maxwell’s

(l/, m/)kE

S s d
Gbr, p

T, bd
4+, m+4+m’

v ' Y, p
(l , M )kEH—l’,rn—l—rn’

(52)

equations and is derived by the solution dD] = [€][E].

In order to implement a pulse excitatidf(x., 2.) atz.
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Fig. 9. Time- and space-adaptive grid.

leAz andz. = m.Az, the space pulse is expressed in terms @égions of fast field variation since they contain only high-fre-

scaling and wavelet functio

ns

P(ze, 2)m Y ¢lle+leg)
lo, g=—00

oo

Z 02545(1“3:457 ZZ7¢)¢(me + lz,qb)

l. g=—00

. "
Tmax 2 —1

Iy

=0 p=0

oo

p>

z, e p

“Prp(me +14,,)

where the coefficients;,,,, Chap.

as shown in Section I11-B.3.
The total electric fieldE* (z s, 2y, t;) with (I — 1/2)Az < AT : s .
z; < (I+1/2)Az, (m —1/2)A% < zp < (m +1/2)Az and € eliminated f_rom the s_ubsequent calculations. Thls_lsth_e sim-
(k—1/2)At < t; < (k+1/2)Atis calculated summing upthepleSt thres_holdmg glgonthm. It does not add_ any significant
effect of all contributing scaling and wavelet coefficients. Thu§verhead in execution time (usualyl0%), but it offers only

in a way parallel to Section
E"(xy, 25, ty)

l
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Tmax 27 —1
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>
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(53)

, can be calculated similarly

(/)rn—l—rn’ (Zf)

E-"L’: bYr, p
k +U4+1/2, m+m/+(2p+1)/27+1

P

’ z/}:;;,{)l—nl’+(2p+1)/2r+l (Zf)

(54)

whereg,,,(x) = ¢((x/Ax)—m) andyr,?(x) = ¥, ((x/Ax)—
p) = 2/%y0 (2"(x/Az) — p) represent the Battle—Lemarie Asitwas stressed above, the mostimportant feature of MRTD
scaling and--resolution wavelet function, respectively.
6) Time-Adaptive Gridding:The MRA is based on the fact eling of very fine geometrical details using cells close to Nyquist
that the wavelets increase the local resolution of the expdmit everywhere else. Since there are more than one points per
sion. Each added wavelet resolution virtually is equivalent tdRTD cell, it is possible calculating multiple wavelet resolu-
the use of a denser grid with one-half cell size. In additiotipns to make use of cell sizes larger than the Nyquist limit,
wavelets have significant values close to discontinuities or ngaough the effective cell size (real cell size/subpoints per cell)

quency spatial components. There are many different ways to
take advantage of these wavelet characteristics in order to create
a space and time adaptive gridding algorithm. In digital signal
processing, thresholding of the wavelet coefficients over a spe-
cific time and space window (5-10 points) contribute signifi-
cant memory economy (a factor between 4—-8 in comparison to
scaling-only expansions), but increase the implementation com-
plexity and execution time. Sometimes the added computational
overhead is greater than the previous execution time.

The simplest way to create a dynamically changing grid is to
threshold the wavelet components to a fraction (usualyl %)
of the scaling function at the same cell (space adaptiveness)
and/or to an absolute threshold (usually 0.0001 or a number
smaller than 1/10 000 of the peak of the excitation time-domain
function) [5], [17]. This comparison is repeated for each time
step (time adaptiveness). All components below this threshold

a moderate (pessimistic) economy in memory (a factor close to
two). Also, this algorithm allows for the dynamic memory allo-
cation in its programming implementation by using the appro-
priate programming languages (e.g., C).

The principles of the dynamically changing time- and space-
adaptive grid are demonstrated in Fig. 9. A pulse is propagating
from the left-hand side to the right-hand side in a partially filled
parallel-plate waveguide. Feér= 0, the wavelets are localized
at the excitation area. They follow the propagating putdset
fore the incidence to the dielectric interface), creating a moving
dense subgrid. After the pulse has been split in reflected and
transmitted pulses, the wavelets increase the grid resolution only
around these pulses. Elsewhere the wavelet components have
negligible values and are ignored.

IV. APPLICATIONSOF MRTD

is the capability of adaptive gridding, which allows for the mod-
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Fig. 10. Parallel-plate five-stage filter.
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is always smaller than this limit. For simplicity, one resolution
of wavelets was used, though more wavelet resolutions can be 1 —
added in a straightforward way.

Initially, the adaptive MRTD gridding with arbitrary resolu-
tions of wavelets was applied to the simulation of a five-stage
parallel-plate filter of Fig. 10 [17]. A Gabor function 0—-4 GHz
propagated from the left-hand side to the right-hand side. The
input and output stages hagd = 12.5 and the intermediate
stages have, = 50.5 (stages withd; = d; = 0.5 mm and
dz = 2 mm) ande,. = 1. (Stages withd, = dy = 14. mm.)
The capability of MRTD to model more than one dielectrics
per cell, as was described in Section IlI-B-2, allowed for the
use of a very large cell size for the scaling functions, though
the wavelets accurately described the intracell dielectric inter- 0 20 40 60 100 120 140 160 180 200
faces. The total length to the vertical direction was 4.8 mm. To 2-position
study the effect of the numerical dispersion, the simulated lon- o _
gitudinal direction was stretched to 600 mm. PML regions §f9: 13- Adaptive grid demonstration € 1000 steps).

16 cells withR,,,, = 10~* terminated the grid and wavelets

of zero resolution were used to the longitudinal direction. Thend transmitted pulses after the incidence to the dielectric in-
structure was analyzed by using an FDTD grid of 8600 cells, terfaces and have negligible values elsewhere. The location and
a scaling-only MRTD grid of 2x 400 cells, and an adaptivenumber of wavelet coefficients with significant values are dif-
(scaling+ wavelets) MRTD grid of 2x 200 cells. The rela- ferent for each time step; something that creates a dense mesh
tive threshold had the value of 0.01% and the absolute threshisidegions of strong field variations, while maintaining a much
was equal to 16*. The maximum number of wavelets requirecoarser mesh for the other cells.

during the 3000 time steps of the simulation was 153 (Fig. 11),It could be claimed that the variable FDTD grid might
offering an economy by 30% in comparison to the scaling onhe a simpler and more versatile alternative for the full-wave
grid and by a factor of 23 in comparison to the FDTD schemsimulation of complex RF structures. Nevertheless, it is a
The accuracy in the calculation of tlseparameters was similar static grid in the time domain. On the contrary, the MRTD
for all three schemes, as can be observed from Fig. 12. Agaimid is updated for each time step based on the status of the
the time- and space-adaptive character of the proposed griddéhgctromagnetic-field propagation, something that leads to the
was demonstrated in Fig. 13 with tlg,-field space distribu- minimization of the required computational effort. In addition,
tion for ¢ = 1000 time steps. The wavelets follow the reflectedhe Battle—Lemarie-based MRTD scheme exhibits dispersion

|Ex(wav)|

0 2 60 80 100 120 140 160 180 200
z-position
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|_ analysis of various nonhomogeneous waveguide geometries. A
mathematically correct way of modeling boundary conditions,
launching the excitation, and reconstructing the field, as well

L as guidelines for the stability and dispersion performance, have

4 been presented and evaluated for expansion using entire-domain

scaling and wavelet functions (cubic-spline Battle—Lemarie). In

comparison to Yee’s conventional FDTD scheme, the proposed
scheme offers memory savings by a factor of 3—6 per dimension
and significantly smaller execution time maintaining a similar

accuracy. The above algorithm can be effectively extended to

e

I R NN B B
1 1

=)

— -

[ [1
b [2

— L2=0.5mm d Ai
- - L2=1.0mm : i (31

-=-- L2=1.5mm i N
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[8]
Fig. 15. Parametric variation c, for /.

[6]

characteristics of a 22nd-order FDTD scheme, though the
variable-grid-based FDTD still is a second-order discretel7]
algorithm.

After validating the performance of the adaptive gridding, [g]
MRTD was extended and used for the optimization of the 3-D
evanescent-modé’-plane finned waveguide bandpass filter [9]
shown in Fig. 14. A WR90 waveguide (22.86 miil0.16 mm)
was used at the input and output stages and a rectangular
waveguide with a cross section of 7.06 mm6.98 mm was
used as the housing of the filter. The width of the fins wasy11j
chosen to be equal to the waveguide width- w = 7.06 mm
(dimensions to the direction that is vertical to the plane ofi1?l
Fig. 14), and the initial values of the optimization longitudinal [13]
geometrical parameters wdie= I, = 0.5 mm,l3 = 7.75 mm,
and/, = 0.94 mm. An MRTD adaptive 20< 20 x 389 grid
and 85000 steps were simulated. A relative threshold of 0.5% 5
was employed. This structure would have required a huge grid
using the conventional FDTD algorithm due to the geometrica
details. Using MRTD led to memory economies by 3-6 pefi7)
dimension and execution time savings by a factor of 2.5 and
allowed for the derivation of parametric design curves similar[18]
to Fig. 15.

[14]

[19]

V. CONCLUSION [20]
A dynamically changing space- and time-adaptive meshing
algorithm based on a MRTD scheme in two dimensions an
on absolute and relative thresholding of the wavelet value
has been proposed and has been applied to the numerical

21]

2.5-D and 3-D complex microwave problems.
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