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Multiresolution Time-Domain (MRTD) Adaptive
Schemes Using Arbitrary Resolutions of Wavelets
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Abstract—A space- and time-adaptive two-dimensional mul-
tiresolution time-domain (MRTD) algorithm based on arbitrary
resolutions of Battle–Lemarie wavelets is proposed. Analytic
expressions for the finite-summation coefficients are derived and
details concerning the modeling of hard boundaries, excitation,
and field reconstruction are extensively discussed. Through the
use of a combination of absolute and relative thresholding, a dy-
namically changing grid is developed with minimal computational
requirements in comparison to the finite-difference time-domain
technique. After the validation process, MRTD is used for the first
time for the numerical optimization of complex RF structures
such as evanescent-mode filters.

Index Terms—Adaptive gridding, FDTD, MRTD, time-domain
techniques, wavelets.

I. INTRODUCTION TOTIME-DOMAIN TECHNIQUES

SIGNIFICANT attention is being devoted today to the anal-
ysis and design of various types of printed components for

microwave applications. Despite the wealth of available codes,
many problems in electromagnetics, and specifically in circuit
and antenna problems [e.g., monolithic microwave integrated
circuit (MMIC) packaging, multichip modules (MCMs)], have
been left untreated due to the complexity of the geometries and
the inability of the existing techniques to deal with the require-
ments for large size and high resolution due to the fine, but
electrically important geometrical details. For these cases, the
straightforward use of existing discretization methods (such as
finite difference time domain (FDTD) [1], [2]) suffers from se-
rious limitations due to the required substantial computer re-
sources and unrealistically long computation times. As a re-
sult, during the past 30 years, the available techniques are al-
most incapable of dealing with the needs of technology leading
to a quest for fundamentally different modeling approaches.
Recently, the use of scaling and wavelet functions as a com-
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plete set of field basis functions resulted in the multiresolution
time-domain (MRTD) [3] schemes that are generalizations to
Yee’s FDTD and can extend the capabilities of the conventional
FDTD by improving computational efficiency and substantially
reducing computer resources by providing space and time adap-
tive gridding. Though various basis have been used [4]–[9], the
Battle–Lemarie family has demonstrated the better economy in
memory and execution time requirements, when only scaling
functions have been used (cell size close to the Nyquist limit).
The purpose of this paper is to extend the performance anal-
ysis to MRTD schemes based on Battle–Lemarie scaling and
wavelets, exploit the adaptive character of such a scheme, and
lay the foundation for the use of other expansion basis.

II. FUNDAMENTALS OF MULTIRESOLUTION ANALYSIS

One of the most important characteristics of expansion to
scaling and wavelet functions is the time-frequency localiza-
tion. The standard approach in ideal low-pass (“scaling”) and
bandpass (“wavelet”) filtering for separating an analog signal
into different frequency bands emphasizes the importance of
time localization. The multiresolution analysis (MRA), intro-
duced by Mallat [10] and Meyer [11], provides a very pow-
erful tool for the construction of wavelets and implementation of
the wavelet decomposition/reconstruction algorithms. The sam-
pling theorem can be used to formulate analog signal represen-
tations in terms of superpositions of certain uniform shifts of a
single function called a scaling function. Stability of this signal
representation is achieved by imposing the Riesz condition on
the scaling function. Another important condition of an MRA is
the nested sequence of subspaces as a result of using scales by
integer powers of two.

An MRA [12] consists of a sequence of successive approxi-
mation spaces . More precisely, the closed subspacessat-
isfy

(1)

with

(density) (2)

(separation) (3)

The basic idea of the MRA is that whenever a collection of
closed subspaces satisfies the multiresolution conditions, there
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exists an orthonormal wavelet basis of ,
, such that for all in

(4)

where is the orthogonal projection onto . For every ,
define to be the orthogonal complement of in . We
have

(5)

and

(6)

It follows that for

(7)

where all these subspaces are orthogonal. Equation (7) is the
foundation of multiresolution. Supposing that scaling functions
of th-order approximation are used, the enhancement of
wavelets of orders to create an approximation with
much better accuracy (th-order approximation). In other
words, the scaling functions describe accurately the smooth
features of a function and the wavelets the finer details for
which a more accurate approximation has to be used. In this
way, MRA operates as a “mathematical microscope.” Wherever
needed, a finite linear combination of wavelets can offer an
arbitrarily small precision of the approximation.

It has to be noted that the spaces inherit the scaling prop-
erty from the

(8)

The Battle–Lemarie wavelets [13], [14] based on theth order
cardinal B-splines belong to with , have very
good (exponential) decay though the support equals the whole

, and have vanishing moments: for
for bounded for . The choices of

the scaling function for the remainder of this paper are the cubic
cardinal spline ( ). After orthonormalization, the spectral
expressions of the cubic cardinal spline scaling and the wavelet
functions (Figs. 1–4) are

(9)

and

(10)

Fig. 1. Battle–Lemarie cubic spline scaling—spatial domain.

Fig. 2. Battle–Lemarie cubic spline zero-resolution wavelet—spatial domain.

Fig. 3. Battle–Lemarie cubic spline scaling—spectral domain (“low-pass”).
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Fig. 4. Battle–Lemarie cubic spline zero-resolution wavelet—spectral domain
(“bandpass”).

III. T WO-DIMENSIONAL MRTD SCHEME

A. Multiresolution Expansion

For simplicity, the two-dimensional (2-D) MRTD scheme is
analyzed for a homogeneous lossless medium with the permit-
tivity and the permeability. Assuming no variation along the
-direction, the Maxwell’s equations for the 2-D mode

[16] can be written as

(11)

(12)

(13)

To derive the 2-D MRTD scheme, the electric- and magnetic-
field components incorporated in these equations are expanded
in a series of scaling and wavelet functions in both- and -di-
rections and in pulse functions in time [4], [17]

(14)

where and
represent the Battle–Lemarie scaling

and -resolution wavelet function, respectively. The expres-
sions of the scaling and the zero-resolution wavelet in the
spectral domain are given in (9) and (10). Since higher res-
olutions of wavelets are shifted and dilated versions of the
zero resolution, their domain will be a fraction of that of the
zero-resolution wavelet; thus, there is going to be more than
one higher resolution wavelet coefficient for each MRTD cell.
Specifically, for the arbitrary resolution and for the cell to
the -direction, there exist wavelet coefficients located at

, . This is the reason
for the summation of the terms for each resolution in the
expansion of (14). and with
and are the coefficients for the field expansions
in terms of scaling and wavelet functions. Schemes based on
a displacement of and by instead of 1/2
could provide slightly improved numerical dispersion and
stability characteristics. Nevertheless, for simplicity reasons,
the Yee’s convention is used for the derivation of the MRTD
equations. The indexes and are the discrete space and
time indexes related to the space and time coordinates via
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and , where are the
space discretization intervals in the- and -directions and
is the time discretization interval. For an accuracy of 0.1%, the
above summations are truncated to a finite number of terms de-
termined by the dispersion and stability requirements (typically
their maximum value is between 22–26). The time-domain
expansion function is defined as

(15)

with the rectangular pulse function

for

for

for

The magnetic-field components are shifted by half a discretiza-
tion interval in the space and time domains with respect to the
electric-field components (leap-frog).

Upon inserting the field expansions, Maxwell’s equations are
sampled using pulse functions as time-domain test functions and
scaling/wavelet functions as space-domain test functions. For
the sampling in the time domain, the following integrals are uti-
lized:

(16)

and

(17)

where is the Kroenecker symbol

for

for

B. Battle–Lemarie Expansion Basis

Sampling in the space domain is obtained by use of the
orthogonality relationships for the Battle–Lemarie scaling and
wavelet functions [12]

(18)

(19)

and

(20)

The integrals containing derivatives can be approximated by the
following expressions:

(21)

with

(22)

and

(23)
with

(24)

and

(25)
with

(26)

and

(27)

with

(28)

For the remainder of this section, an expansion only in a series
of scaling and zero-resolution wavelet functions will be consid-
ered. Hints for the enhancement of additional wavelet resolu-
tions will be presented where needed in the following sections.
Since for the zero resolution ( ), there is only one wavelet
coefficient per cell ( ), the symbols will be omitted from
the definition of the coefficients, which will be given by

(29)
with

(30)

and

(31)
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TABLE I
COEFFICIENTSa(i), b (i), c (i)

with

(32)

Observing the similar form of (24)–(26), (31) can be written as

(33)

Also,

(34)
with

(35)

with given in Table I [4]. Due to symmetries
in the integrals for the zero resolution, the coefficients satisfy
the conditions , , and

for . Hence, the stencil lengths have to be
and . These

conditions are not general and do not hold for any other arbitrary
resolution. The stencil size is determined by the dispersion re-
quirements. It has to be noted that the Battle–Lemarie scaling
function has exponential decay; thus, the coefficients for

are not zero, but their value is negligible (10 ).
After applying the Galerkin technique to (11)–(13), the fol-

lowing MRTD equations are derived:
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(36)

The values of the stencil lengths depends on the ac-
curacy and dispersion requirements. The discretization cell is
similar to the conventional FDTD cell (Fig. 5).

In [18], the stability limit for the 2-D MRTD scheme based
only on the scaling functions’ expansion (S-MRTD) was found
to be given by

(37)
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Fig. 5. MRTD discretization cell in 3-D.

where are the cell dimensions and is the
velocity of the light in the modeled medium.

For , the above stability criterion gives

- (38)

It is known [2] that

(39)

which gives for

(40)

Equations (38)–(40) show that, for same discretization size, the
upper bounds of the time steps of FDTD and S-MRTD are com-
parable and related through the factor. The stability analysis
can be generalized easily to three-dimensional (3-D). The new
stability criteria can be derived by (38) and (40) by substituting
the term with .

More complicated expressions can be derived for the max-
imum allowable time step for schemes containing scaling and
wavelet functions. For simplicity and without loss of generality,
it is assumed that the stencil size is equal for all three summa-
tions ( ). The upper bound of the time
step for the 2-D MRTD scheme with zero-resolution wavelets
to the one ( -direction) or two directions (- and -directions)
for is given by

-

Fig. 6. Stability parameters for MRTD.

with the first equation shown at the bottom of this page, and

with the second equation shown at the bottom of this page,
where the notation

has been used.
It can be observed that the upper bound of the time step de-

pends on the stencil size . This dependence is ex-
pressed through the coefficients , which de-
crease as the stencil size increases. Fig. 6 shows thatpracti-
cally converges to the value 0.6371 after and

and for . The
expression of can be easily derived by the expressions of

and by zeroing out the effect of . The above
expressions can be generalized for resolutions of wavelets
by dividing the time-step expression by due to the dilation
of the wavelet resolution.
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Fig. 7. Image theory application for tangential-to-PECE-field.

Fig. 8. Treatment of wavelet components of normal-to-PECE-field.

In addition, the dispersion curves have demonstrated that cell
sizes close to the Nyquist limit provide acceptable accuracy
even for zero resolution of wavelets. These schemes have been
proven to be equivalent to 22nd-order FDTD schemes [18]. On
the contrary, conventional FDTD (second-order) simulations re-
quire much smaller cell sizes (close or below ).

1) Modeling of Hard Boundaries:Unlike the FDTD where
the consistency with the image theory is implicit in the applica-
tion of the boundary conditions, for MRTD schemes based on
entire-domain functions, this theory must be applied explicitly
in the locations of perfect electric conductors (PECs) or per-
fect magnetic conductors (PMCs). The total value of a field
component at a specific cell is affected by a theoretically in-
finite—practically finite—number of neighboring cells due to
the fact that the basis functions extend from to . Some
of these neighbors may be located on the other side of the con-
ductor. This effect is taken into consideration by applying the
image theory (Fig. 7). In this way, the physical boundary condi-
tion of zeroing-out the -field tangential to the PEC is automat-
ically satisfied. For example, even symmetry is applied for the
normal-to-PEC electric-field components and odd symmetry for
the parallel-to-PEC. Image theory can be implemented automat-
ically for an arbitrary number of hard boundaries.

The time-domain numerical techniques are modeling the
real space by creating a discrete numerical grid. Sometimes
this mesh does not coincide with the electrical one, and MRTD
is one example. The enhancement of wavelets on MRTD
requires a special treatment of the wavelet components of
the normal-to-PEC electric field. Assuming a vertical PEC
in Fig. 8, the electrical domains (I) and (II) are isolated from
each other. That means that one wavelet component value of
the normal electric fieldEXACTLY ON the PEC would create a

nonphysical electrical coupling. Thus,TWO wavelet compo-
nents, one located infinitesimally on the left-hand side of the
PEC and the other infinitesimally located on the right-hand
side of the PEC, have to be defined in order to satisfy the
electrical isolation condition. The -field component that is
parallel to the PEC has to be treated in a similar way. The rest
components of the - and -field have to be zeroed-out on
both sides of the PEC, so one value is sufficient. In FDTD, the
interleaved positioning of the field components on the Yee’s
cell (which are the same with the scaling functions components
on the MRTD’s cell) requires that the normal-to-PEC-field
component is located a half cell size away from the conductor.
In this way, the definition of only one field component per cell
is sufficient.

2) Modeling of Dielectric Interfaces:Due to the entire do-
main basis functions, of one cell is related to values all
over the neighboring cells [19]. To circumvent this problem, the

equations have to replace the equations and then
the -coefficients have to be calculated from the-coefficients
in a mathematically correct way. After inserting the field expan-
sions in Maxwell’s equations, we sample them using pulse func-
tions in time and scaling/wavelet functions in space domain.

As an example, sampling in space and
time, the following equations are obtained:

(41)
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where and with (scaling),
(wavelets of zero resolution) are the coefficients for the elec-
tric- and magnetic-field expansions.

Starting from the constitutive relationship for the
total electric field at one mesh point and sampling the scaling
and wavelet components, we reach the following equations for

: (42)

where

(43)

and (scaling), (wavelets of zero reso-
lution). Applying these equations for all neighboring cells that
have nonnegligible values for at least one coef-
ficient, the following compact form is derived:

(44)

For geometries with dielectrics varying from air ( ) to Si
( ), it was observed that the above summations can
be truncated for . Also, the integrals can be ap-
proximated by finite summations of six cells on each side of the
central cell ( cell). Due to the orthogonality relationship be-
tween the scaling and wavelet functions, for uniform dielectrics
(constant throughout the integration domain), these integrals
are simplified to and
for or , transforming to a diagonal matrix.
For structures containing dielectric discontinuities, some or all
of these integrals have a nonzero value. In this case, the whole
geometry has to be preprocessed before the initialization of the
time loop, and the coefficients have to be as-
signed to any cell and included in the matrix . For each
cell, the amplitude of these coefficients is compared to the am-
plitude of the self-term . If all coefficients are below
a threshold (usually 0.1%), they are set to zero and this cell is
exempted from the following inversion, otherwise it is included
in a new submatrix. For most practical cases, this submatrix has
significantly smaller dimensions than (usually 10%) and
contains only cells close to dielectric discontinuities. The in-
verse of this matrix is used for the calculation of thefrom
the values for each time step. The inversion takes place only
once (in the preprocessing stage before the initiation of the sim-
ulations), thus it adds only negligible computational overhead to
the algorithm. Even for structures with arbitrary dielectric con-
figurations, the number of cells with dense submatrices (density
larger than 50%) is going to be much smaller than the total grid
size and the matrix multiplication step for thecalculation will
not significantly affect the execution time.

3) Modeling of Excitation:Without loss of generality, the
modeling of the excitation for the 2-D algorithm is presented.
The two-and-one–half-dimensional (2.5-D) and 3-D algorithm
is a direct extension of the 2-D algorithm.
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TABLE II
EXCITATION SCALING DECOMPOSITIONCOEFFICIENTS

In order to apply a point (pulse) excitation for
, the pulse has to be decomposed in terms of

scaling and wavelet functions

(45)

with

(46)

Practically, the summations of (45) can be truncated to a finite
number of terms. Usually 6–8 terms on each side of the exci-
tation point per direction can offer an accuracy of representa-
tion close to 0.1%. In case the neighboring scaling or wavelet
functions are located outside the computational domain (e.g.,

or for a domain to
the -direction), image theory has to be applied for their trans-
lation inside the computational grid.

If there is no discontinuity (hard boundary or dielectric inter-
face) in the summation interval of (45), the double integrals of
(46) can be split in two single integrals

with given in Tables II and III.
Due to the symmetries of the Battle–Lemarie scaling and

wavelet functions, the decomposition coefficients have to sat-
isfy the following conditions:

If a hard boundary, such as a PEC, is located in the integration
domain of the evaluation of the coefficients, the image theory
should be applied appropriately instead of the above symmetry
equations.

For each time step, the excitation scaling and wavelet com-
ponents have to be superimposed to the respective field values
obtained by the MRTD algorithm in order to provide a trans-
parent source similar to FDTD as follows:

For the 2.5-D MRTD algorithm, which requires impulse exci-
tation in time-domain, the above superposition takes place only
for the first time step . Nevertheless, for the 2-D MRTD,
it has to be repeated throughout the number of time steps that
the excitation is on. The appropriate number of the time steps
will depend on the time dependence of the excitation (usually
Gaussian, Gabor, or sinusoidal time dependence).

Arbitrary excitation spatial distributions for an area

can be modeled in a similar way. The spatial distribution has to
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TABLE III
EXCITATION WAVELET DECOMPOSITIONCOEFFICIENTS

be sampled with scaling and wavelet functions, giving the new
decomposition coefficients

for and .
For most simulations, the choice of

offers an accuracy close to 0.1%.
Lossy materials can be modeled with MRTD following a pro-

cedure similar to the simulation of dielectric interfaces. The ad-
ditional loss current term is given by the matrix relationship

(47)

where is the matrix consisting of the sampled conductivity
profile for each FDTD cell.

The PML numerical absorber can be easily extended for arbi-
trary wavelet resolutions in a straightforward way [20]. Due to
the entire-domain nature of the Battle–Lemarie expansion basis,
a matrix equation has to be solved for the perfectly matched
layer (PML) area. For structures with inherent dielectric inho-
mogeneities, the use of the effective dielectric constantpro-
vides satisfactory numerical reflection performance.

4) Total Field Reconstruction:Due to the nature
of the Battle–Lemarie expansion functions, the total
field is a summation of the contributions from the
nonlocalized scaling and wavelet functions. For ex-
ample, the total electric field with
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,
and is calculated in the
same way with [4] and [21] by

(48)

where and
represent the Battle–Lemarie scaling

and -resolution wavelet function, respectively, and
is the maximum wavelet resolution used in this area of the
computational domain. It has been observed that the values

and offer
accuracy close to 0.5% for most simulations incorporating the
first two wavelet resolutions. For the cases of narrow strips
with very sharp field discontinuities, the summation limits must
increase up to 15–20 terms per direction.

The fact that the MRTD is based on entire-domain basis func-
tions with varying values along each cell offers the unique op-
portunity of a multipoint field representation per cell. The neigh-
boring scaling and wavelet coefficients can be combined in an
appropriate way to calculate the total field value for more than
one interior cell points. In this way, MRTD creates a mesh with
much larger density than that offered by the nominal number
of the cells without increasing the memory requirements. This
additional density is very useful in the calculation of the char-
acteristic impedance of planar lines, where even a small field
variation can cause a perturbation of the impedance value by
5–10 . On the contrary, FDTD is based on pulse basis functions
that have a constant value for each cell, offering a single-point
field representation.

5) Generalization for Arbitrary Number of Wavelet Res-
olutions: For simplicity, wavelets up to resolution
are used only to the -direction. The extension to two and
three dimensions is straightforward. Since the support of an

-resolution wavelet is one-half of the support of an
-resolution wavelet, it is obvious that for each cell, there

will exist one zero-resolution wavelet, two one-resolution
wavelets, , and -resolution wavelets. As it
was noted earlier, schemes based on a displacement of
and by instead of 1/2 could provide slightly

improved numerical dispersion and stability characteristics.
Their derivation is similar to the one presented in this section.
After sampling Maxwell’s equations with scaling and wavelet
functions, expressions similar to (36) are derived. As an
example, sampling in space and
time, the following equations are obtained:

(49)

and

(50)

where and with (scaling),
(wavelets of resolution at the -position of the cell) are the
coefficients for the electric- and magnetic-field expansions.
The indexes and are the discrete space and time
indexes, which are related to the space and time coordinates
via and , where are
the space discretization intervals in the- and -directions
and is the time discretization interval. The coefficients

are given
by (22)–(28). For an accuracy of 0.1%, the parameters

need to take values in the range of 6–12.
The summation limits get decreasing values as the
difference gets larger due to the different scales of the
wavelet domains reaching the minimum value of one even for

.
To model a dielectric discontinuity, the starting point is the

constitutive relationship that derives the following
equations for :

(51)
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and

(52)

where the coefficients are defined by (46). For each time
step, is calculated by through the discretized Maxwell’s
equations and is derived by the solution of .

In order to implement a pulse excitation at
and , the space pulse is expressed in terms of

scaling and wavelet functions

(53)

where the coefficients can be calculated similarly
as shown in Section III-B.3.

The total electric field with
, , and

is calculated summing up the
effect of all contributing scaling and wavelet coefficients. Thus,
in a way parallel to Section III-B.4

(54)

where and
represent the Battle–Lemarie

scaling and -resolution wavelet function, respectively.
6) Time-Adaptive Gridding:The MRA is based on the fact

that the wavelets increase the local resolution of the expan-
sion. Each added wavelet resolution virtually is equivalent to
the use of a denser grid with one-half cell size. In addition,
wavelets have significant values close to discontinuities or near

Fig. 9. Time- and space-adaptive grid.

regions of fast field variation since they contain only high-fre-
quency spatial components. There are many different ways to
take advantage of these wavelet characteristics in order to create
a space and time adaptive gridding algorithm. In digital signal
processing, thresholding of the wavelet coefficients over a spe-
cific time and space window (5–10 points) contribute signifi-
cant memory economy (a factor between 4–8 in comparison to
scaling-only expansions), but increase the implementation com-
plexity and execution time. Sometimes the added computational
overhead is greater than the previous execution time.

The simplest way to create a dynamically changing grid is to
threshold the wavelet components to a fraction (usually0.1%)
of the scaling function at the same cell (space adaptiveness)
and/or to an absolute threshold (usually 0.0001 or a number
smaller than 1/10 000 of the peak of the excitation time-domain
function) [5], [17]. This comparison is repeated for each time
step (time adaptiveness). All components below this threshold
are eliminated from the subsequent calculations. This is the sim-
plest thresholding algorithm. It does not add any significant
overhead in execution time (usually10%), but it offers only
a moderate (pessimistic) economy in memory (a factor close to
two). Also, this algorithm allows for the dynamic memory allo-
cation in its programming implementation by using the appro-
priate programming languages (e.g., C).

The principles of the dynamically changing time- and space-
adaptive grid are demonstrated in Fig. 9. A pulse is propagating
from the left-hand side to the right-hand side in a partially filled
parallel-plate waveguide. For , the wavelets are localized
at the excitation area. They follow the propagating pulse (be-
fore the incidence to the dielectric interface), creating a moving
dense subgrid. After the pulse has been split in reflected and
transmitted pulses, the wavelets increase the grid resolution only
around these pulses. Elsewhere the wavelet components have
negligible values and are ignored.

IV. A PPLICATIONSOF MRTD

As it was stressed above, the most important feature of MRTD
is the capability of adaptive gridding, which allows for the mod-
eling of very fine geometrical details using cells close to Nyquist
limit everywhere else. Since there are more than one points per
MRTD cell, it is possible calculating multiple wavelet resolu-
tions to make use of cell sizes larger than the Nyquist limit,
though the effective cell size (real cell size/subpoints per cell)
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Fig. 10. Parallel-plate five-stage filter.

Fig. 11. Nonzero wavelets’ number.

is always smaller than this limit. For simplicity, one resolution
of wavelets was used, though more wavelet resolutions can be
added in a straightforward way.

Initially, the adaptive MRTD gridding with arbitrary resolu-
tions of wavelets was applied to the simulation of a five-stage
parallel-plate filter of Fig. 10 [17]. A Gabor function 0–4 GHz
propagated from the left-hand side to the right-hand side. The
input and output stages had and the intermediate
stages have (stages with mm and

mm) and . (Stages with . mm.)
The capability of MRTD to model more than one dielectrics
per cell, as was described in Section III-B-2, allowed for the
use of a very large cell size for the scaling functions, though
the wavelets accurately described the intracell dielectric inter-
faces. The total length to the vertical direction was 4.8 mm. To
study the effect of the numerical dispersion, the simulated lon-
gitudinal direction was stretched to 600 mm. PML regions of
16 cells with terminated the grid and wavelets
of zero resolution were used to the longitudinal direction. The
structure was analyzed by using an FDTD grid of 81600 cells,
a scaling-only MRTD grid of 2 400 cells, and an adaptive
(scaling wavelets) MRTD grid of 2 200 cells. The rela-
tive threshold had the value of 0.01% and the absolute threshold
was equal to 10 . The maximum number of wavelets required
during the 3000 time steps of the simulation was 153 (Fig. 11),
offering an economy by 30% in comparison to the scaling only
grid and by a factor of 23 in comparison to the FDTD scheme.
The accuracy in the calculation of the-parameters was similar
for all three schemes, as can be observed from Fig. 12. Again,
the time- and space-adaptive character of the proposed gridding
was demonstrated in Fig. 13 with the -field space distribu-
tion for time steps. The wavelets follow the reflected

Fig. 12. S-parameters of the filter.

Fig. 13. Adaptive grid demonstration (t = 1000 steps).

and transmitted pulses after the incidence to the dielectric in-
terfaces and have negligible values elsewhere. The location and
number of wavelet coefficients with significant values are dif-
ferent for each time step; something that creates a dense mesh
in regions of strong field variations, while maintaining a much
coarser mesh for the other cells.

It could be claimed that the variable FDTD grid might
be a simpler and more versatile alternative for the full-wave
simulation of complex RF structures. Nevertheless, it is a
static grid in the time domain. On the contrary, the MRTD
grid is updated for each time step based on the status of the
electromagnetic-field propagation, something that leads to the
minimization of the required computational effort. In addition,
the Battle–Lemarie-based MRTD scheme exhibits dispersion
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Fig. 14. Optimized evanescent-mode filter geometry.

Fig. 15. Parametric variation ofS for l .

characteristics of a 22nd-order FDTD scheme, though the
variable-grid-based FDTD still is a second-order discrete
algorithm.

After validating the performance of the adaptive gridding,
MRTD was extended and used for the optimization of the 3-D
evanescent-mode -plane finned waveguide bandpass filter
shown in Fig. 14. A WR90 waveguide (22.86 mm10.16 mm)
was used at the input and output stages and a rectangular
waveguide with a cross section of 7.06 mm6.98 mm was
used as the housing of the filter. The width of the fins was
chosen to be equal to the waveguide width mm
(dimensions to the direction that is vertical to the plane of
Fig. 14), and the initial values of the optimization longitudinal
geometrical parameters were mm, mm,
and mm. An MRTD adaptive 20 20 389 grid
and 85 000 steps were simulated. A relative threshold of 0.5%
was employed. This structure would have required a huge grid
using the conventional FDTD algorithm due to the geometrical
details. Using MRTD led to memory economies by 3–6 per
dimension and execution time savings by a factor of 2.5 and
allowed for the derivation of parametric design curves similar
to Fig. 15.

V. CONCLUSION

A dynamically changing space- and time-adaptive meshing
algorithm based on a MRTD scheme in two dimensions and
on absolute and relative thresholding of the wavelet values
has been proposed and has been applied to the numerical

analysis of various nonhomogeneous waveguide geometries. A
mathematically correct way of modeling boundary conditions,
launching the excitation, and reconstructing the field, as well
as guidelines for the stability and dispersion performance, have
been presented and evaluated for expansion using entire-domain
scaling and wavelet functions (cubic-spline Battle–Lemarie). In
comparison to Yee’s conventional FDTD scheme, the proposed
scheme offers memory savings by a factor of 3–6 per dimension
and significantly smaller execution time maintaining a similar
accuracy. The above algorithm can be effectively extended to
2.5-D and 3-D complex microwave problems.
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